Continuous Interpolation of Solutions of Lipschitz Inclusions

نویسندگان

  • Mireille Broucke
  • Ari Arapostathis
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic differential inclusions of semimonotone type in Hilbert spaces

In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

Differential Inclusions and Monotonicity Conditions for Nonsmooth Liapunov Functions

In this paper we address the problem of characterizing the in nitesimal properties of functions which are non-increasing along all the trajectories of a di erential inclusion. In particular, we extend the condition based on the proximal gradient to the case of semicontinuous functions and Lipschitz continuous di erential inclusions. Moreover, we show that the same criterion applies also in the ...

متن کامل

Existence of Viable Solutions for Nonconvex Differential Inclusions

We show the existence result of viable solutions to the differential inclusion ẋ(t) ∈ G(x(t)) + F (t, x(t)) x(t) ∈ S on [0, T ], where F : [0, T ] × H → H (T > 0) is a continuous set-valued mapping, G : H → H is a Hausdorff upper semi-continuous set-valued mapping such that G(x) ⊂ ∂g(x), where g : H → R is a regular and locally Lipschitz function and S is a ball, compact subset in a separable H...

متن کامل

Continuous Interpolation of Solution Sets of Lipschitzian Quantum Stochastic Differential Inclusions

Given any finite set of trajectories of a Lipschitzian quantum stochastic differential inclusion (QSDI), there exists a continuous selection from the complex-valued multifunction associated with the solution set of the inclusion, interpolating the matrix elements of the given trajectories. Furthermore, the difference of any two of such solutions is bounded in the seminorm of the locally convex ...

متن کامل

Lipschitz-continuity of the Solution Map of Some Nonconvex Second-order Differential Inclusions

We prove the Lipschitz dependence on the initial condition of the solution set of a nonconvex second-order differential inclusions by applying the contraction principle in the space of selections of the multifunction instead of the space of solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001