Continuous Interpolation of Solutions of Lipschitz Inclusions
نویسندگان
چکیده
منابع مشابه
Stochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کاملDifferential Inclusions and Monotonicity Conditions for Nonsmooth Liapunov Functions
In this paper we address the problem of characterizing the in nitesimal properties of functions which are non-increasing along all the trajectories of a di erential inclusion. In particular, we extend the condition based on the proximal gradient to the case of semicontinuous functions and Lipschitz continuous di erential inclusions. Moreover, we show that the same criterion applies also in the ...
متن کاملExistence of Viable Solutions for Nonconvex Differential Inclusions
We show the existence result of viable solutions to the differential inclusion ẋ(t) ∈ G(x(t)) + F (t, x(t)) x(t) ∈ S on [0, T ], where F : [0, T ] × H → H (T > 0) is a continuous set-valued mapping, G : H → H is a Hausdorff upper semi-continuous set-valued mapping such that G(x) ⊂ ∂g(x), where g : H → R is a regular and locally Lipschitz function and S is a ball, compact subset in a separable H...
متن کاملContinuous Interpolation of Solution Sets of Lipschitzian Quantum Stochastic Differential Inclusions
Given any finite set of trajectories of a Lipschitzian quantum stochastic differential inclusion (QSDI), there exists a continuous selection from the complex-valued multifunction associated with the solution set of the inclusion, interpolating the matrix elements of the given trajectories. Furthermore, the difference of any two of such solutions is bounded in the seminorm of the locally convex ...
متن کاملLipschitz-continuity of the Solution Map of Some Nonconvex Second-order Differential Inclusions
We prove the Lipschitz dependence on the initial condition of the solution set of a nonconvex second-order differential inclusions by applying the contraction principle in the space of selections of the multifunction instead of the space of solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001